
Specific Poincaré map for a randomly-perturbed nonlinear oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 489

(http://iopscience.iop.org/0305-4470/39/3/003)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 03/06/2010 at 04:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 489–497 doi:10.1088/0305-4470/39/3/003
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Abstract
The motion of a classical Hamiltonian oscillator, driven by a weak random
force, is examined by means of a deterministic approach. We design the
specific Poincaré map to find domains of finite-time stability in phase space.
The trajectories belonging to these domains remain stable by Lyapunov criteria
for the period of mapping T0 at least. We derive the lower border for the time
of phase correlations between close trajectories. It is found that the lifetime of
some stable domains significantly exceeds the correlation time of the external
force. The randomly-driven Morse oscillator is used as an example.

PACS numbers: 05.40.Ca, 05.45.−a

1. Introduction

It is well known that chaotic deterministic systems, as well as those under random forcing,
exhibit irregular diffusion-like behaviour. Nevertheless, they are commonly studied using
different approaches and methods. Nonhyperbolic deterministic systems are known to have
mixed phase space partitioned into stable and unstable regions. Motion is almost predictable
within stable domains but permits only probabilistic predictions within unstable ones. On the
other hand, systems under random forcing are investigated in terms of the purely statistical
description, which provides excellent agreement when random deviations of each trajectory
from an unperturbed one are numerous. In the statistical approach, the problem of finding an
exact solution of the equations of motion is replaced by the problem of finding the respective
probability density function in phase space, whose evolution is governed by the Liouville
equation. If correlations between close trajectories decay rapidly, the Liouville equation
reduces to the Fokker–Planck equation [1]. The time of phase correlations, defined as the
timescale of exponential divergence of close trajectories, is commonly assumed to be equal
to the reciprocal maximal Lyapunov exponent. If a system under consideration is stochastic,
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the maximal Lyapunov exponent can be derived using the Furstenberg–Khasminsky formula
[2, 3].

The maximal Lyapunov exponent, determined by the invariant measure of a stochastic
system under consideration, does not depend on either a realization of the external force or
initial conditions. The distribution of the characteristic exponents at finite times, however,
is broad, and an appreciable portion of trajectories remain stable on a timescale of several
inverse Lyapunov exponents [4] that presumes intermittency-like dynamics. Formation of
stable sets in phase space is more prominent in oscillating systems due to resonant interaction
of unperturbed motion with a random perturbation [5].

In this paper we look into the stability of a nonlinear oscillator driven by a weak noise from
the point of view of deterministic theory. The concept of dynamical chaos is used to describe
the system’s behaviour at finite times. Our main goal is to link deterministic and probabilistic
descriptions and to estimate the horizon of stability for trajectories under random perturbation.
The paper is organized as follows. In section 2 we introduce the one-step stroboscopic map,
which we entitle as the specific Poincaré map, to determine stable domains in phase space.
In section 3, this map is applied to a model of the Morse oscillator. In the final section, we
summarize and discuss results of this work.

2. Theoretical analysis

Consider a one-dimensional nonlinear oscillator with the Hamiltonian

H = H0 + εH1(t) = p2

2
+ U(q) + εV (q)ξ(t), (1)

where q is the position, p is the momentum, U(q) is an unperturbed potential with the
equilibrium point at q = q0, ε is a small constant, V (q) is a smooth function, ξ(t) is a noise with
normalized first and second moments, 〈ξ 〉 = 0 and 〈ξ 2〉 = 1/2. For convenience, we make
the canonical transformation from the variables (p–q) to the action and angle variables (I–ϑ)
[6]. The action and angle variables are introduced by the following formulae:

I = 1

2π

∮
p dq, ϑ = ∂

∂I

∫ q

q ′
p dq, (2)

where q ′ is a coordinate of one of the turning points, and p is written as

p =
√

2[H0 − U(q)]. (3)

The inverse transformation

q = q(I, ϑ), p = p(I, ϑ) (4)

reduces the Hamiltonian (1) to a sum of the time-independent term and the perturbation

H = H0(I ) + εV (I, ϑ)ξ(t). (5)

The equations of motion in terms of the canonical action-angle variables take the form [1]

dI

dt
= −∂H

∂ϑ
= −ε

∂V

∂ϑ
ξ(t),

dϑ

dt
= ∂H

∂I
= ω + ε

∂V

∂I
ξ(t), (6)

where ω is the frequency of unperturbed oscillations. This form is independent of whether
additive (V = const ∗ q) or multiplicative noise is imposed. Hereafter, we will consider
some single typical realization of noise ξ(t). As any single realization of a random process is
deterministic in the sense that at any given moment of time the respective random function has
a certain value, the equations of motion can be treated as deterministic ordinary differential
equations.
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The notion of stability means a weak sensitivity of a solution to the small changes in initial
conditions and, therefore, starting points for the stable trajectories belong to some compact sets
in phase space. In the case of a periodically-driven deterministic system, existence of these
sets issues immediately from the KAM theory. Unfortunately, the KAM theory is useless
in dynamical systems driven by random forces. Although each individual realization of a
random perturbation can be treated as a deterministic function rather than a stochastic one, the
resonances between unperturbed motion and a perturbation are densely distributed in phase
space, and there is no nondestroyed invariant curves. It implies all trajectories are unstable in
the limit t → ∞, and that makes a deterministic description of long-term dynamics senseless.

Nevertheless, if one seeks to describe motion only within some finite time interval [0 : T0],
‘deterministic’ methods are relevant to explore stable sets satisfying the condition of finite-time
invariance: if any set in phase space at t = 0 transforms to itself at t = T0 without mixing, then
it corresponds to an ensemble of trajectories which are stable by Lyapunov within the interval
[0 : T0]. According to this statement, stable sets can be found using the specific Poincaré map

Ii+1 = I (t = T0, Ii, ϑi), ϑi+1 = ϑ(t = T0, Ii, ϑi), (7)

where I (t; Ii, ϑi) and ϑ(t; Ii, ϑi) are the solutions of equations (6) with initial conditions
I (0) = Ii, ϑ(0) = ϑi . The specific Poincaré map can be constructed with any canonically
conjugated variables. The basic rule is that values of these variables, calculated at the ith step
of mapping, become the initial conditions for the next step. A realization of ξ(t) is one and
the same for all steps of mapping. In point of fact, this map is equivalent to a Poincaré map
for a system with the Hamiltonian

H = H0(I ) + εV (I, ϑ)ξ̃ (t), (8)

where ξ̃ (t) is a periodic function consisting of identical pieces of ξ(t) of the same duration T0

ξ̃ (t + nT0) = ξ(t), 0 � t � T0, (9)

where n is an integer. In this way we replace the original stochastic dynamical system by a
periodically-driven one. It should be emphasized that this replacement is valid because we
restrict ourselves by considering dynamics within the interval [0 : T0] only. The key property
of the specific Poincaré map follows directly from its analogy with the usual Poincaré map
and can be declared in the following way: each point of a continuous closed trajectory of the
specific Poincaré map corresponds to a starting point of the solution of equations (6) which
remains stable by Lyapunov at the time T0. The inverse assertion is not, in general, true. It
will be shown below that the specific Poincaré map provides a sufficient but not necessary
criterion of stability.

Topological properties of trajectories of the specific Poincaré map can be studied in the
framework of the theory of nonlinear resonance [1]. The functions V (I, ϑ) and ξ̃ (t) can be
decomposed into the Fourier series

V =
∞∑

l=−∞
Vl exp[i(lϑ + φl)], ξ̃ =

∞∑
m=−∞

ξm exp[i(m�t + ψm)], (10)

where � = 2π/T0. If V (I, ϑ) is an analytical function, the Fourier amplitudes decay as
Vl(I ) ∼ exp[−σ(I)l], where σ is the minimal distance between a singularity of V (ϑ) in the
complex plane and the real axis [7]. The Fourier amplitudes for the function ξ̃ (t) decay as
ξm ∼ m−β , where the parameter β is determined by smoothness of the function ξ̃ (t) (see, for
instance, [8] and references therein).
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Taking into account (9), and substituting (10) into (6), we rewrite the equations of motion
as follows:

dI

dt
= − iε

2

∞∑
l,m=−∞

lVlξm ei�,
dϑ

dt
= ω +

ε

2

∞∑
l,m=−∞

∂Vl

∂I
ξm ei�, (11)

where � = lϑ − m�t + φl − ψm. The stationary-phase condition d�/dt = 0 implies
the resonances of map (7) mT (I = Ires) = lT0, where T (I) = 2π/ω(I) is the period of
unperturbed oscillations. The relation l:m defines the order of the respective resonance. It
should be noted that an infinite number of resonances kl:km (k = 1, 2, 3, . . . ∞) corresponds
simultaneously to each resonant action. However, if Ires is far enough from the separatrix
value, the product Vklξkm decreases rapidly with increasing k and only the resonances with
small l and m can significantly affect trajectories. Thus, if T0 > T (Ires), only the superior term
with l = 1 should be taken into account in equations (11). Elimination of the resonances with
l > 1 allows one to describe the motion in the vicinity of Ires in the pendulum approximation
[1, 7]. Leaving only the resonant terms we can rewrite equations (11) in the form:

dI

dt
= εV1(Ires)ξm sin �,

d�

dt
= ω − m� + ε

∂V1(Ires)

∂I
ξm cos �. (12)

The system of the coupled equations (12) ensues from the universal Hamiltonian of nonlinear
resonance [1]

Hu = 1
2 |ω′

I |(I)2 + εVlξm cos �, (13)

where I = I − Ires. Its solution describes the phase oscillations near elliptic fixed points
� = 0 of an isolated resonance. An angular location of the fixed points depends on the
random phase ψm and, therefore, varies from one realization of ξ(t) to another. A trajectory
of map (7), being captured into a resonance, draws a chain-like pattern in phase space. In the
stable regime, neighbouring chains are far enough from each other, and the space amid them is
filled by non-resonant stable trajectories. Equation (13) gives the rough estimate of the width
of a resonance

ω = αImax � 2
√

εαV1ξm, (14)

where α = dω/dI is a characteristic of the nonlinearity of the oscillator. The distance between
resonances of the mth and (m + 1)th orders is equal to δω(T0) = 2π/T0 and decreases with
increasing T0. If the criterion of Chirikov [8]

ω

δω
= K � 1, (15)

holds, resonances overlap in phase space and the phase oscillations become unstable. The
time in order for all resonances in phase space to intersect each other can be estimated from
(15) and thus, satisfies the equation:

Tc − πK√
εαV1(Imin)ξm(Tc)

= 0. (16)

More exactly, Tc is the time of destabilization of low-energy oscillations with minimal
values of the action. Let us assume that for T0 > T (I), the amplitudes ξm are expressed
as ξm = ξ1(β)m−β , where m = T0/T (I). Then the solution of equation (16) is the following:

Tc = (πK)2/(2−β)[εαV1(Imin)ξ1]−1/(2−β)T −β/(2−β). (17)

where Imin is the minimal resonant action. If ξ(t) is the delta-correlated white noise process
(β = 0), one yields

Tc = πK[ε|ω′
I |V1(Imin)ξ1]−1/2. (18)
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Chirikov’s criterion provides a sufficient condition for emergence of global chaos in typical
Hamiltonian systems. The time horizon Tc can be treated as the lower border of the time of
phase correlations, because stable regions in phase space can persist at t > Tc as islands, whose
boundaries are impenetrable for chaotic trajectories of map (7). The surprising corollary from
equation (16) is that the fast decay of correlations of the noise does not imply, in general,
smallness of Tc. Indeed, high-frequency harmonics of ξ(t) correspond to weak high-order
resonances with small widths. If T0 is large enough and the noise has some given spectral
density, the set of the amplitudes ξm is the same for different realizations of the noise.
Therefore, the time horizon Tc depends weakly on the realization chosen and may be treated
as a characteristic quantity of a system under consideration.

3. Numerical results

In this section, we perform a numerical implementation of map (7) for the model of the
randomly-driven Morse oscillator that is used to describe the vibrational motion of diatomic
molecules. The respective Hamiltonian is the following:

H = p2

2
+ D(1 − exp[−q])2 + εV (q)ξ(t), (19)

where D = 1, ε = 0.01 and V (q) = exp(−q − 1). For the sake of simplicity, we assume p, q
and t as dimensionless variables. The function ξ(t) is modelled as a sum of 10 000 randomly-
phased harmonics with frequencies being distributed uniformly in the interval [0.02π : 2π ].
The analytical expressions for the action and the angle are the following:

I =
√

2(
√

D − √
D − H), ϑ = ±π

2
∓ arcsin

1 − eq(1 − H/D)√
H/D

, (20)

where the upper and the lower signs correspond to positive and negative values of momentum,
respectively. The most accessible action Is corresponds to the separatrix (H = D) and is
equal to

√
2D. The period of unperturbed oscillations varies from

√
2π at I = 0 to an infinity

at the separatrix. The function V (I, ϑ) reads

V (I, ϑ) = e−1(1 − H(I)/D)

1 − [H(I)/D]1/2 cos ϑ
. (21)

Decomposing it into the Fourier series, we obtain

V (I, ϑ) = 2 e−1

(
1 − H

D

) (
V0 +

∑
m

exp(−σm) cos mϑ

(1 − √
H/D)1/2

)
, (22)

where σ is given by the formula

σ = ln

( √
H/D

1 − (1 − H/D)1/2

)
. (23)

As it follows from (23), σ vanishes at the separatrix.
We constructed numerically map (7) with different values of T0. Each individual orbit was

integrated over 2000 mapping periods. The topology of the map was found to be similar for
all realizations of ξ(t). Figure 1 represents a typical set of maps computed with an individual
realization. Phase space is almost stable with small values of T0 (see figure 1(b)). Chaos
occurs only in a narrow layer near the separatrix. In the case of T0 = 100, the chaotic layer
expands into internal areas of phase space, but low-amplitude oscillations with small values
of the action variable maintain stability. Some of them have the form of islands submerged in
the chaotic sea. This case is illustrated in figure 1(b). Finally, when the step of mapping T0
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Figure 1. The specific Poincaré map for the randomly-driven Morse oscillator in the polar
coordinates action angle with different steps of mapping. (a) T0 = 10, (b) T0 = 100, (c) and (d)

T0 = 1000. Ix = (I/Is) cos ϑ, Ix = (I/Is) sin ϑ .

is large enough, phase space is almost chaotic (see figure 1(c)), but small islands of stability
still survive. Some of them are clearly seen in figure 1(d), where the enlarged fragment
of figure 1(c) is depicted. Several islands are not marked by self-closing curves but can be
recognized as unoccupied areas.

Figure 2 represents the analogous set of maps computed with another realization of ξ(t)

having the same spectrum. This realization was generated using another random set of phases
of harmonics. As was mentioned in the preceding section, locations of the elliptic points of
resonances are different in figures 1 and 2. On the whole the macroscopic structure of the
specific Poincaré map is one and the same for both realizations.

Modelling of map (7) makes apparent some features of the transport in phase space. Only
those trajectories can escape from the potential well, which belong to the chaotic layer near
the separatrix. The probability of escaping from the stable area is equal to zero. Moreover,
stable internal area is forbidden for chaotic trajectories up to some critical time. Thus the
system performs nonergodic properties on finite but relatively long timescales. Manifestations
of local nonergodicity are demonstrated in [9], where evolution of patches of passive tracers
in a random velocity field is shown.

Formation of stable domains is a consequence of domination of resonances with small
l that leads to slow smooth variability of the perturbation term V (I, ϑ)ξ(t) in phase space.
This can be illustrated by the plot that shows by colour modulation values of variations of
the normalized action during the oscillator period in the plane of initial values of the action
and angle variables [5]. More exactly, we computed a variation of the action between two
successive crossings of the line ϑ = const. by a trajectory. The respective plots for the
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Figure 2. The same as in figure 1, but with another realization of ξ(t).
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Figure 3. Plot representing variations of normalized action I/Is per period of the Morse oscillator
in the plane of normalized initial values of the action and angle with (a) the same realization as
in figure 1, (b) the same realization as in figure 2. White colour corresponds to the trajectories
crossing the separatrix.

randomly-driven Morse oscillator with different realizations of ξ(t) are presented in figure 3.
Both plots demonstrate large alternating ‘hills’ of positive variations and ‘hollows’ of negative



496 D Makarov and M Uleysky

ones separated from each other by ‘zero lines’, which correspond to zero variations. If the
variation of the action is negative above the ‘zero line’ and positive below it, then action
values of the trajectories with starting points near this line converge to each other. Since ‘hills’
and ‘hollows’ are large enough, zones of convergence are expected to be large as well, that
anticipates existence of stable domains.

Domination of resonances with small l implies oscillator motion to be essentially
responsible to a narrow resonant band in the spectrum of a perturbation, whose frequencies are
close to the frequency of an oscillator (this is discussed in detail in [5]). In such a consideration
breakdown of stability is connected with increasing an incoherent influence of ‘nonresonant’
spectral bands, that reveals itself as overlapping of neighbouring resonances of the specific
Poincaré map.

4. Conclusion

In the present paper, we offer a robust method of detecting stable domains in phase space of
a nonlinear oscillator driven by a random external force. The main advantage of this method
is the possibility to analyse purely stochastic systems by means of deterministic theory. In
particular, it permits one to detect the fact of the presence of stable domains, which are found
to exist for different realizations of a noise with given spectrum.

Existence of long-living stable domains seems to be an important feature in various fields.
For instance, a wavefield structure in stochastic waveguides depends on the degree of stability
of rays. Interference of the rays, belonging to the stable domains, is constructive, whereas the
chaotic rays interfere incoherently [4]. Stable domains can be visualized as compact spots
of passive scalars advected by a stationary vortex and an alternating current [9]. Influence
of phase space structure on the crossing of a potential barrier is important for the study of
stochastic resonance in a double-well potential (see [10] and references therein).

Two remarks about map (7) should be given. First, the total area of the stable domains can
be estimated from the specific Poincaré map if only the perturbation is periodic with a period
satisfying to the condition Tp = T0/n, where n = 1, 2, . . . . In this case ξ̃ (t) ≡ ξ(t), and the
specific Poincaré map coincides with the usual Poincaré map. For nonperiodic perturbations,
the total area of the stable domains with a given lifetime T ′ is larger than it can be exposed
by the map with the step of mapping T0 = T ′. Second, the map can be constructed for any
temporal interval [t ′ : t ′ + T0]. Thus, if ξ(t) is a stationary random process, the domains
of long-term stability exist at any time moment. Hence it should be proposed that diffusion
in phase space, being a sequence of random walks among metastable states, may exhibit
anomalous properties and power scaling laws [11]. This topic will be the objective of our
forthcoming work.
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